
Accelerating Software Development Through Collaboration Page 1
Copyright 2002, Silicon Strategies Marketing www.SiliconStrat.com

Accelerating Software
Development Through
Collaboration

Larry Augustin, Ph.D.
CEO

VA Software Corp.
47071 Bayside Parkway

Fremont, CA 94538
510-687-7029

lma@vasoftware.com

Dan Bressler
Director, Product Marketing

VA Software Corp.
47071 Bayside Parkway

Fremont, CA 94538
510-687-6939

dbressler@vasoftware.com

Guy Smith
Product Strategist Consultant
Silicon Strategies Marketing

630 Taylor Avenue
Alameda, CA 94501

510-693-4477
guy@SiliconStrat.com

1. ABSTRACT
In early 1999, VA Software launched a project to understand how
the Internet development community had been able to produce
software such as Linux, Apache and Samba that was generally
developed faster and with higher quality than comparable
commercially available alternatives [1,2,3,20]. Our goal was
simple: determine how to make more software development
projects successful.

We discovered that successful Internet community projects
employed a number of practices that were not well characterized
by traditional software engineering methodologies. We now refer
to those practices as Collaborative Software Development or
CSD. Late in 1999 we developed the SourceForge platform to
make it easy for even small software development projects to
employ those practices, and in November of 1999 launched the
SourceForge.net web site based on the SourceForge platform.

The site was an overwhelming success, and in less than two years,
grew to support more than 27,000 software development projects
and over a quarter million software developers worldwide.
SourceForge.net affords us an unequaled test bed for
understanding CSD. In response to demand from companies
seeking to enable CSD within their organizations, we announced a
commercial version of the SourceForge platform, SourceForge
Enterprise Edition, in August 2001.

This paper describes the principles of CSD, the software
development pain points those principles address, and our
experience enabling CSD with the SourceForge platform.

2. INTRODUCTION
The success of Open Source software has baffled many

industry observers. Open Source rapidly changed the paradigm of
software development and markets by delivering more software
with better quality in less time – a feat most software driven
organization would like to achieve.

In 1/3 the time that it took UNIX to meet enterprise needs,
Open Source has provided a scaleable and stable operating system
(Linux), viable and intuitive GUIs with competent desktop
metaphors (KDE and GNOME), commercial grade database
systems (PostgreSQL, MySQL), and an array of solutions from
office suites to enterprise applications. All this was accomplished
without traditional budgeting, staffing or unified vision
statements.

At VA Software, this process intrigued us. Given our origins
as a premiere Linux expertise company, Open Source
development disciplines were important to us. The most
interesting aspect of Open Source was that their development
disciplines, which seemed so removed from traditional software
development practices, were in some ways more successful. We
wanted to understand how far flung, ad-hoc groups of developers
could successfully establish projects, execute them, and in the
process produce more products more quickly and with better
quality than some commercial endeavors. This ultimately lead to
examining how to apply Open Source best practices to software
engineering in large enterprises.

Accelerating Software Development Through Collaboration Page 2
Copyright 2002, Silicon Strategies Marketing www.SiliconStrat.com

Our investigations defined Collaborative Software
Development (CSD) as a concept. CSD knowledge in turn
produced SourceForge.net, a CSD portal that today supports over
30,000 Open Source projects and 300,000 developers working on
a vast array of Open Source projects. CSD’s basic tenets were
amplified within SourceForge.net, further accelerating Open
Source projects.

In this paper we will discuss the principles of CSD not only
as they occurred in the Open Source community, but also how
they apply to enterprise software development. The same “pain
points” that Open Source developers face, still exist and are
growing within most organizations.

3. WHAT LIMITATIONS WERE
OVERCOME
The essence of Open Source development is the rapid creation of
solutions. The key word therein is “rapid”. Everything about
Open Source is performed in Internet time. In the Open Source
community:

• Projects are established instantly
• Requirements are defined quickly
• Detail design is created and reviewed online
• Code is written by individuals or small, agile teams
• Code reviews are almost mandatory and facilitated online
• Code testing is a fast, collaborative process
• Feedback is loud and instantaneous

The common thread binding each of these elements is that the
work is done in a collaborative fashion. From concept to release,
two or more people work closely together through all phases of
the process.[19] Without the collaborative functions facilitated by
a common set of Internet technologies, Open Source would be
extremely difficult if not impossible.

Wide adoption of Internet technology standards facilitated CSD
and Open Source development. To accomplish feats such as
Linux and KDE, the Open Source community had to overcome
many obstacles that affect most enterprises as well. These
obstacles include:

Recruitment: Finding the right experts to work on
particular projects.

Geography: Getting people to work together from
anywhere on the planet.

Communications: Facilitating both ad hoc and structured
communications during each project phase.

Asynchronous: The ability to effectively collaborate
across different time zones.

Common tools: Having centralized sets of tools for the
management of communications, code, documentation,
and knowledge.

Process: Utilizing different and flexible approaches for
projects based on suitability and applicability for the
project, and for the culture-fit of the team.

Project management: Process agnostic systems for
managing projects and tracking the status of team efforts.

Knowledge management: Capturing and making
available all the intelligence that went into a software
project.

Internet technologies overcame each of these obstacles. From
email to network aware code repositories, Internet tools removed
barriers hindering the development process and freed developers
to create superior code more rapidly.

A by-product of having highly communicative, distributed
development teams was an unintentional leaning toward “agile
development methods” and self-adaptive processes [4,6]. Almost
universally, Open Source projects grow through small,
incremental changes defined and executed by compact and highly
communicative development teams. In the Open Source
community, electronic collaboration replaces the need for the
direct interaction required by many agile methods, most notably
those proposed by eXtreme Programming (XP) advocates.

Another facet of agile development found in the Open Source
community is the ability to rapidly adapt to requirements changes
as opposed to predicting all requirements in advance. Academic
papers are littered with case studies of large software projects with
extensive requirements planning that failed once the project was
finished.[7,8,9] Many of these failures were due to requirements
changing during the course of a lengthy development. Open
Source does not suffer from this point of failure due to the
iterative nature of Open Source development and the ability to
quickly adapt to changing requirements.

One final comparison with agile methods is worth examining:
Proponents of agile methods note that software development is as
much people-oriented as process-oriented. Since Open Source
development is the communion of developers, it is primarily
people oriented (i.e., they would not be there unless they wanted
to be).[10,19] But more to the point, the tools and processes for
CSD were developed to fit the modes and temperaments of
developers. Molding the methods to the people is the people-
oriented aspect of CSD that yielded the greatest benefits.

VA Software was interested in learning more about CSD. The
success of our original business model hinged on assuring the
success of Open Source projects in general, and advancing the
success of the Open Source community. We set out to understand
how the Open Source community collaborated on development
projects, why they were successful, and how the process could be
improved.

Our investigations resulted in SourceForge.net, and ultimately
SourceForge Enterprise Edition. This developer’s portal for the
Open Source community hosts more software projects than any
other point on the Internet. The success of SourceForge.net is due
in part to our review of the nature of CSD and how we enhanced
Internet based collaboration.

When we designed SourceForge.net, we extended and enhanced
the processes and tools that Open Source developers used to
accelerate their efforts. The portal was designed to:

• Minimize administrative work
• Maximize communications and collaboration
• Preserve project knowledge
• Make it easy to establish projects and recruit experts
• Find and leverage existing code
• Do all of this on a global scale

Accelerating Software Development Through Collaboration Page 3
Copyright 2002, Silicon Strategies Marketing www.SiliconStrat.com

4. ENTERPRISE DEVELOPMENT – AN
OPEN SOURCE MICROCOSM?
Though enterprise development organizations often reflect many
of the positive aspects of the Open Source community, there are
some glaring differences. It is worth discussing these given that
they can be corrected.

4.1 Mobility of resources
Larger enterprises have software development organizations that
on many levels organizationally resemble the Open Source
community. Developers are divided between teams based on
areas of technical expertise. The largest difference between the
Open Source community and development teams in enterprises is
that enterprise developers do not get to choose the projects on
which they work, much to their dismay.

And herein is one area where enterprise development
organizational inflexibility hampers software development. The
Open Source community thrives in part because developers are
mobile resources. Open Source developers jump from project to
project because no artificial barriers exist. There are no org
charts, no segregation of responsibilities, no factional loyalties
aside from technology prejudices. Developers are completely free
to take on new challenges.

In enterprises this degree of project mobility is rarely facilitated.
Large multi-national corporations with global development efforts
often cannot make developers from one group or division
available to others within the same company due to bureaucracy
or ignorance of available talent. This limitation separates people
with significant expertise from critical projects and more rapid
software development.

Part of the problem is simply knowledge about available
resources. One of the most active subsystems in SourceForge.net
is the “Help Wanted” database. Within SourceForge.net,
developers can list their areas of expertise as well as post their
resumes. Project leaders can search for experts to work on their
projects. It is rare for a multi-national enterprise to have this level
of resource identification and recruitment potential.

4.2 Culture of sharing
Enterprise development organizations are not breeding grounds
for collaborative efforts. Little is done by management – aside
from code reuse campaigns and object library development – to
promote the sharing of knowledge and code between
developers.[11,12,15,16]

In the Open Source community, sharing of expertise and code is
considered the norm and not the exception. Shared expertise is
another explanation for the rapid ascension of Open Source as a
viable source of tools. Any Open Source project manager can
quickly find experts to collaborate – even on a short-term basis –
on his or her project. Experts eliminate learning curves and help
in avoiding novice errors.

Sharing of expertise cannot be forced. Developers need to want
to contribute to other projects and the success of other developers.
CSD depends on facilitating a common forum for experts to find
one another, examine their works, and collaborate on projects or
core technologies.

4.3 Peerage
Much of the collaborative nature within the Open Source
community that is absent in enterprise development organizations
revolves around peerage. Enterprise organizations often promote
competition and not mutual support through standard individual
performance reviews and bonus systems. Thus the peer processes
common in the Open Source community do not naturally spawn
in enterprise settings.

Peerage has two primary benefits in the Open Source world.

Peer review: Because code is developed in the SourceForge.net
CSD environment, all products are available for review by the
developer community at large. Discussion and critiques are
common, rapid, boisterous, and contribute greatly to the
development of stable and secure products (indeed, the Open
Source peer process has been credited with creating software more
immune to Internet threats than software produced by enterprises
– a fact recently discovered by Microsoft).[13,14]

Peer glory: Developers thrive on peer approval. Public
recognition for their products is more valuable to a developer than
a bonus check. Within a CSD platform like SourceForge.net,
developers have the opportunity to “show off” by having their
work visible to their peers. This not only promotes participation
in Open Source, but it also promotes collaboration because
developers know the best way to avoiding embarrassing bugs and
design flaws is to get early and frequent input from their peers.
Enterprises could, but rarely do, allow their developers that
momentary bit of glory that motivates them to work more
creatively and effectively.

5. THE CHANGING ENTERPRISE
DEVELOPMENT CYCLE
Interestingly, enterprises are experiencing many of the same
software development obstacles as the Open Source community.
The nature of enterprise software development is changing due to
both technological and market forces.

When businesses began asking us for a commercial version of
SourceForge.net, we started our investigations anew, focusing on
how large organizations develop software now and how they want
to develop software in the future. Combined with market research
data, we were able to create a clear picture of the current state of
enterprise software development and how it can evolve.

Some of the forces at work in enterprise software development
are:

Remote developers: Enterprises are under demand to employ
remote developers. Presently 61% of enterprises have some
remote development and 50% outsource some or all of their
software development [5]. Remote developers can be
telecommuters (a competitive benefit afforded to many
developers), consultants, developers from other divisions within a
large enterprise, and offshore development companies. The need
for hiring experts in specific technologies is accelerating the
demand for outsourcing.

Rapid changes and iterative projects/processes: The rate of
change in technology is growing as is the demand for software
solutions that provide competitive advantages. Enterprises must
deal with more new technology while accommodating internal
demands for more strategic software capabilities.[17] Combined,
they are forcing enterprises into a more iterative development

Accelerating Software Development Through Collaboration Page 4
Copyright 2002, Silicon Strategies Marketing www.SiliconStrat.com

CSD

Distributed
Development

Non Reuse
of Code and
Knowledge

Distributed
Development

Incomplete
Toolset

IP Loss

model resembling that of agile method advocates and the Open
Source community.

Scattered and incomplete information: With developers coming
from far flung corners of the world, development managers are
facing new difficulties in capturing everything known about
software projects, and making this knowledge reusable. But
enterprises are keenly aware that knowledge capture can be a
distraction from development work – enterprises clearly need non-
intrusive tools for collecting intelligence, intellectual property,
code and documentation.

Team communications: Development managers tell us that
facilitating team communications was essential to their future
success. The use of remote developers and the “soloist” nature of
many developers complicate collaborative communications.
Developers needed new ways of communicating about their
projects and the opportunity to investigate other projects to
expand their technical horizons.

Code and knowledge reuse: Most development managers
understand the value of reusing code. Mature code improves the
quality of new projects and helps accelerate their completion.
Most managers though do not have a pain-free way of making
code available to widely distributed teams in a way that made
finding reusable code practical. They almost universally lack
simple tools for making the knowledge that went into projects
available for new projects.

6. ENTERPRISE CSD PAIN POINTS
When these forces were compared to typical development teams,
we discovered five “pain points” in enterprise software
development. These pain points are places where software
development typically fails to achieve organization goals. The
five pain points are:

Distributed development: The ability to have many
developers from many different teams and many different
locations collaborate effectively and share their
expertise.

Incomplete development tools: Provide
tools that facilitate the management of
code, knowledge, collaboration
and projects, and integrate this
knowledge to present a unified and
consistent view of projects, code
and knowledge.

Intellectual property loss: With high
developer turnover rates and a growing
remote developer base, a great deal of
intellectual property and knowledge –
that could benefit planning and future
projects – is being lost. Preserving
knowledge and expertise and developers
rapidly shifting from project-to-project, and from team-to-team, is
essential to accelerating future projects.

Duplicated coding efforts: Our investigations showed that a
significant amount of new code duplicated functionality found in
existing projects, resulting in unnecessary development spending
and software release delays. Enterprises need to rapidly identify
code and knowledge that can be reused without inducing
cumbersome processes in capturing, classifying and indexing

these resources. They also need the ability to identify experts on
select technologies so they can “reuse” that expertise.

Excessive administration time: Developers and their managers
alike are overwhelmed with the administrative effort required to
keep projects on track. Developers in particular are resentful of
how project management functions reduced their development
time. The Open Source community lives – and indeed thrives –
without cumbersome processes and administrative details.
Management’s mission is to remove administrivia from the lives
of developers without sacrificing knowledge capture and project
management.

With only nominal exceptions, this list of enterprise software
development pain points matches the obstacles that the Open
Source community overcame both through informal means, and
through the SourceForge.net developer portal. Indeed, the Open
Source community appears to be a model for enterprise
development practices of the future.

7. CONCLUSIONS
Enterprises can learn a great deal from the trials and successes of
the Open Source community. Open Source survives because it
can harness the intellect and expertise of developers around the
globe, permitting the best resources to be applied to each project.
The Open Source community creatively uses the Internet in
general, and SourceForge.net specifically, to overcome the
barriers normally imposed by time and distance. Enterprises are
beginning to shop the globe for experts-on-demand, following the
Open Source model for project recruitment.

But more importantly, the Open Source community modeled their
development practices and tools to achieve nearly impossible
goals, including the development of an operating system that is
gradually eliminating all but one proprietary operating system.
Open Source’s reliance on agility, iterative development, and

rapid communications were crucial to changing the
software market.

Essential to the Open Source success story is
their highly collaborative nature. Self-

managing teams of widely removed
developers works because

collaboration is the hub of all
their activities. Management

overhead and administrative
burdens are nearly eliminated

through frequent collaboration on
each development phase and small,

iterative changes to their products.

Enterprises leveraging software as
competitive tools need to examine the

processes of the Open Source community
and rely on the same tools and practices.

Doing so will accelerate enterprise
development efforts and remove the pain of besting the
competition.

8. REFERENCES
[1] B. P. Miller, L. Fredriksen, and B. So, “An Empirical Study

of Unix Utilities,” Communications of the ACM, 33, 12,
Dec 1990, pp. 32-44.
ftp://grilled.cs.wisc.edu/technical_papers/fuzz.ps.

Accelerating Software Development Through Collaboration Page 5
Copyright 2002, Silicon Strategies Marketing www.SiliconStrat.com

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A.
Natarajan, and J. Steidl, “Fuzz Revisted: A Re-examination
of the Reliability of Unix Utilities and Services,” Computer
Sciences Department, University of Wisconsin-Madison,
1995. ftp://grilled.cs.wisc.edu/technical_papers/fuzz-
revisted.ps.

[3] J. E. Forrester, and B. P. Miller, “An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing,” Computer Sciences Department, University of
Wisconsin-Madison, Jul. 2000.
ftp://grilled.cs.wisc.edu/technical_papers/fuzz-nt.ps.

[4] Martin Fowler, “The New Methodology,” Software
Development magazine, December 2000,
http://martinfowler.com/articles/newMethodology.html

[5] Evans Data, “Enterprise Development Management Issues,”
December 2001

[6] Martin Fowler, Jim Highsmith, “The Agile Manifesto”,
Software Development, August 2001,
http://www.sdmagazine.com/documents/s=844/sdm0108a/

[7] Douglas C. Schmidt, Ralph E. Johnson, Mohamed Fayad,
“Software Patterns”, Communications of the ACM, October
1996

[8] Robert L. Glass, “Software Runaways: Monumental
Software Disasters”, Prentice Hall Inc, 1998, ISBN 0-13-
673443-X

[9] Lawrence Bernstein and David Klappholz, “Teaching
Old Software Dogs, Old Tricks”, Stevens Institute of
Technology, http://www.cs.stevens-
tech.edu/NJCSE/Papers/Papers_TeachingOldSoftware
Dogs.htm

[10] E. S. Raymond, “The cathedral and the bazaar”, 11
November, 1998,
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/

[11] Eschenfelder, K., Heckman, R. and Sawyer, S., (1998)
"The Distribution of Computing: Cooperation Among
Distributed Technical Specialists," Information
Technology & People, 11(2), 84-103.

[12] Sawyer, S. and Guinan, P., (1998) "Software Development:
Processes and Performance," IBM Systems Journal, 37(4),
552-569

[13] Simson Garfinkel, “Security Through Obscurity”,
WideOpen News, 12 November, 1999

[14] Pete Loshin, “Open Source Under The Hood “,
Information Security Magazine, March 2001

[15] Dr. Will Tracz, “Did someone say reuse? Well excuse
me!”, Flashline Newsletter, October 2001

[16] James Highsmith, “Adaptive Software Development: A
Collaborative Approach to Managing Complex
Systems,” Dorset House; ISBN: 0932633404

[17] Steve McConnell, “Rapid Development: Taming Wild
Software Schedules”, Microsoft Press, ISBN:
1556159005

[18] Kent Beck, “Extreme Programming Explained:
embrace change,” Addison Wesley, 2000, ISBN:
0201616416

[19] Greg Perkins, “Culture Clash and the Road to World
Domination”, IEEE Software, January 1999

[20] Huaiqing Wang, Chen Wang, “Open Source Software
Adoption: A Status Report”, IEEE Software, March
2001

